The Vizlib Data Viz Health Check Get your free Data Viz fitness score!

Back to blog

What’s behind a supercharged data dashboard?

What’s behind a supercharged data dashboard?

When it comes to visualizing data – the goal isn’t just to present something that looks nice. The purpose of taking the time to create a beautiful, compelling data dashboard is about communication, and – ultimately – storytelling.

When done well, a thoughtfully prepared dashboard – like those created using Qlik + Vizlib – can take an end user or audience member on a journey, while educating, engaging, or even entertaining them along the way. 

And truly exceptional data visualizations – like the one we’re exploring in this blog, below – can do all three at once.

Nobel Peace Prize Dashboard built with Vizlib 

This data dashboard investigates and unravels the data behind Nobel Prize winners between 1901 and 2020. Using an array of sophisticated data visualization techniques, the developer-creator paints a clear picture of several key metrics related to Nobel Prize winners, including gender, subject area, and country. 

Of course, it takes time and practice to cultivate the skills required to create something that looks and feels interactive, relevant, and exciting – but there are a few tips, tricks, and tools that you can use now to begin creating dashboards like the one you see here.

The data dashboard explored in this blog was created as part of a data visualization challenge. So, it was built to be over-the-top beautiful (and it is!), but that doesn’t mean it can’t teach us valuable, practical lessons about visualization techniques and design. 

In this article, we’ll look into these techniques one at a time, explaining how the visualization was created, why the technique is right for the job, and how Vizlib made it possible to transform this data into a striking, interesting story. 

Setting the stage: Theming and data presentation 

Theming is an important part of building an impressive and engaging data visualization. This data dashboard uses Vizlib Sheet Menu for theming, which makes it easy to customise and adapt to your needs (especially since you can add CSS for even more flexibility). 

Another important part of creating a dashboard that’s interesting is choosing how to present the data you’ve visualized. Said otherwise: choosing which data visualization technique to use is just as important as choosing where to display it on your dashboard. A dashboard should present the maximum amount of information in the least congested or chaotic way possible, so choosing how to arrange information – and having the freedom and flexibility of a solution designed for customisation, like Vizlib – is critical for success. 

Labelled Nobel Peace Prize Data Dashboard built with Vizlib

You’ll notice that the dashboard we are looking at here uses a limited number of colours, and that those colours are relatively muted and neutral. This is a conscious choice by the creator to let the data do most of the talking without distraction. It’s also consistent with the data set being presented, which is historical, non-fiction, and scholarly.

Alternatively, if you were examining a data set about the use of fireworks during festivals over time, you might choose to use more striking colours with more variation. Ultimately, it’s important to create an app that feels representative of the data. 

Generally, developers and creators have their own processes for deciding how to present their visualizations: you may create an outline first, or you may find the perfect balance through trial and error. However you go about it, striking the right composition – balance between text and images, contrast between light and dark, harmony between portrait and landscape elements – is an undeniably important part of making sure you get your message across clearly and effectively. 

The example we’re exploring today does a great job of presenting the data at hand in an attractive, appealing manner. Let’s dive in and see exactly how it was built. 

Data visualization technique #1: Vizlib Tiles 

Here, we see a detailed breakdown of Nobel Prize winners by subject area. The data displayed includes the number of Laureates (winners) from each subject, broken down further by gender and average age. The oldest and youngest winners in each area are also clearly shown.

Nobel Peace Prize Dashboard built with Vizlib - full image

The data visualization technique used to display this data is Vizlib Tiles. Tiles are an excellent choice for this particular data visualization because it allows a creator to repeat consistent data across each tile while also using images (something that’s not possible with a Table). This is an important distinction, as the use of images here to show the oldest and youngest winners is particularly effective because it clearly shows contrast, and lends a human dimension to the content being shown. 

Some notable takeaways from this visualization include the difference in age between the oldest and youngest-ever winners: 80 years! Also interesting to note is the average age of winners, by subject area: the lowest average age for winners is in the area of Physics (56.2), compared to 60.9 years of age for winners of the Nobel Prize for Peace. This is particularly interesting considering that the Nobel Prize for Peace is the only subject that requires no specialised area of work or credentials. 

With so much information presented in such a clear way through the use of Tiles, it’s easy to pull out interesting bits of information and begin to paint a clearer picture of a data set that spans over 100 years! 

Data visualization technique #2: Vizlib Scatterplot 

Above, we see another unique breakdown of the Laureate’s age over time and separated by subject matter. The visualization technique used here is a Vizlib Library Scatterplot, which allows a creator to visualize trends with two measures and one dimension. 

Nobel Peace Prize Dashboard built with Vizlib - Element 1

This visualization technique is a strong way to present this data because it allows you to dive deeper with regression analysis (the red line), which is a clear way to show trends. It also allows for the addition of images in the background (as shown here with the subject area symbols), the customisation of the minimum and maximum measures, and for the annotation of important measures (shown by the vertical dotted line). 

Interesting to note from the above Scatterplot is the speed with which the average age of Laureates is changing across the six subject areas. For example, while Laureates in both the Literature and Peace subject areas are getting younger, they’re doing so at totally different rates. With such an easily digestible visualization, it’s easy to draw inferences and begin meaningful conversations with this data. 

Data visualization technique #3: Vizlib Scatterplot (with a twist)

Here, we see a detailed visualization of Laureates by year, category, and gender. The visualization technique used is once again a Scatterplot – but this one is full of surprises. . . 

Nobel Peace Prize Dashboard built with Vizlib - Element 3

In order to create the distinct look of this chart, the creator implemented a technique typically used to highlight a certain area with colour, to do something else: create labels! The white labels that you can see on the far left of the visualization – the ones showing the categories – aren’t labels at all! They’re actually “reference areas,” with text overlaid. To tell an even more visually compelling story, the creator added icons next to the labels for added context.

This particular data visualization is compelling because of how straightforwardly it shows a few key things about this data set: first, you can see right away that there were no Nobel Prizes awarded for Economics until 1969. When put into the larger context of the overall dashboard, it becomes instantly clear why there are far fewer total Nobel Prizes in Economics than the other categories. Also, this chart clearly shows the breakdown of male versus female winners through the use of coloured squares. With information so clearly presented, it becomes even easier to make sense of the data being presented.

Data visualization technique #4: Vizlib Grid Chart and Heatmap 

Here, we see a detailed breakdown of Nobel Laureates by country and category, and also by university and category. The data shows the concentration of these measures through the use of custom colours.

Heat map nobel peace prize dashboard

The visualization technique used to display this information is the Vizlib Grid Chart. Using the Grid Chart allows the creator to clearly show two dimensions and one measure, and it allows for total customisation with colour and shape. 

Some notable takeaways from this Grid Chart include the high concentration of Laureates from the US (274), which is much higher than the next-closest country, the UK, which has 103. Even more interesting is the fact that the US, with such a high number of total winners, only has nine total Laureates in Literature, whereas France – which has only 20% as many total winners as the US – has 81% as many Laureates in the area of Literature.

Once again, extrapolating and analysing this data is made remarkably easy and approachable by the visualization technique used, which presents this information in a straightforward and easy to digest manner. 

Where to start?

The trick to actually mastering these techniques and creating a killer data dashboard is simply to get started! Since that’s easier said than done, it helps to break down the creation process into steps, which you can tackle one-by-one so you can start supercharging sooner, not later:

  • First, review or research the data set you want to explore and visualize.
  • If possible or appropriate, decide in advance which conclusions you are seeking to substantiate and present.
  • If you’re not seeking to present a specific conclusion or set of conclusions, identify your goals and purpose
  • Next, decide what data is critical and organise it from most to least important. Validate the data you’re seeing with quick visualizations using the Custom Report to explore the data at hand. Without visualizations, it’s difficult to identify outliers or errors.
  • Now it’s time to seek inspiration for your ultimate design and presentation! Use Google, view images of the topic – explore and discover anything that might help lend context or a unique angle to what you’re working with.
  • Get sketching! Draw the design on paper before starting to create your dashboard. Using pen and paper allows for freedom from technical restrictions.
  • Finally – get busy building!

Qlik + Vizlib for supercharged storytelling

Building an incredible, engaging dashboard requires ingenuity, skill, and out-of-the-box thinking. And for a lot of users, designing something as comprehensive and aesthetically pleasing as what we’ve explored in this piece isn’t front of mind.

But with a few tips, tricks, and tools from Vizlib (and a bit of practice!), any creator can take their skills to the next level and begin building dashboards that go beyond visualization to tell a clear, compelling, and convincing story. Explore more incredible apps here.

Data set used:

Creator: Jochem Zwienenberg, Victa BV.

abstract illustration abstract illustration

Learn how Vizlib can supercharge your Qlik analytics

Schedule a demo and chat with our product experts

book a demo

You’ve come to the right place!

Vizlib’s feature-rich data visualisation products will help you get started on your data storytelling journey.

  • Easy-to-use (including drag and drop functionality)
  • No coding skills needed
  • Highly customisable to suit your design needs
  • Templates to fast-track your dashboard creation

Got a technical question? Our Help Centre has heaps of helpful guides, articles, FAQs and more. Access Help Centre

vizlib abstract pattern dots vizlib abstract pattern dots vizlib abstract pattern vizlib abstract pattern

Book a demo